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Voiced sound production is the primary form of acoustic commu-
nication in terrestrial vertebrates, particularly birds and mammals,
including humans. Developing a causal physics-based model that
ultimately links descending vocal motor control to tissue vibration
and sound requires embodied approaches that include realistic
representations of voice physiology. Here, we first implement and
then experimentally test a high-fidelity three-dimensional (3D) contin-
uummodel for voiced sound production in birds. Driven by individual-
based physiologically quantifiable inputs, combined with noninvasive
inverse methods for tissue material parameterization, our model accu-
rately predicts observed key vibratory and acoustic performance traits.
These results demonstrate that realistic models lead to accurate pre-
dictions and support the continuum model approach as a critical tool
toward a causal model of voiced sound production.
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Of all human vocalizations, the subset of voiced sounds has
been most intensively studied (1–4). During voiced sound

production, laryngeal vocal folds exhibit self-sustained vibrations
through fluid–tissue interactions and elastic restoring forces. These
vibrations mechanically convert expiratory airflow into pulsatile
airflow, which causes air pressure oscillations constituting the
acoustic excitation of the system (1–4). This physical framework is
known as the myoelastic-aerodynamic theory (2, 3) and shared be-
tween mammals and birds (5). Extensive studies in humans have
established that vocal fold posturing, tissue properties, and aerody-
namic forces all interact to ultimately control vocal fold kinematics
and glottal flow that subsequently set crucial acoustic source pa-
rameters such as fundamental frequency, registers, and spectral
slope (1–4, 6). However, because of experimental limitations with
in vivo human subjects, animal models, excised larynges, and phys-
ical models, we still lack systematic experimental data to causally
link vocal fold biomechanical properties to phonation (1, 7).
Due to these limitations, computational biophysical models have

been instrumental to systematically explore the high-dimensional
control space of vocal fold vibration (7–15). In humans, biophysical
models range in complexity from reduced-order, lumped-element
models that approximate vocal folds as discrete coupled mass-
spring-damper systems (16) to high-fidelity continuum models
that include the full fluid–structure–acoustics interaction (FSAI)
complexity of voiced sound production in anatomically realistic
geometries of vocal fold and tract (4, 7–14). While reduced-order
models allow broad exploration of simplified control spaces with
little computational power (16), they essentially lack physiological
representation of tissue properties and geometry (1, 4, 16). High-
fidelity continuum models on the other hand are computationally
expensive and allow only limited parameter exploration (7–14), but
offer realistic representations of voice physiology and can causally
link vocal fold biomechanical properties to phonation (7). Addi-
tionally, high-fidelity FSAI models allow implementation of mus-
cles that are anatomically correctly placed (15), which is critical to
their function (17–19). The high-fidelity continuum model ap-
proach is thus a promising tool when realistic representations of
voice physiology and biomechanics are essential, such as in the

clinical management of voice disorders (1, 4), and ultimately un-
derstanding motor control of human (15, 20, 21) or avian (22–25)
voiced sound production.
However, the high-fidelity continuum model approach currently

faces three key challenges (1, 4). First, the implementation itself of
complex high-fidelity FSAI models that include accurate de-
scription of physiological parameters and are capable of resolving
the large range of spatial and time scales remains challenging (7–
14). Second, on the experimental side, although partial physio-
logical datasets have been collected in mammals (1, 2, 20, 21), we
currently lack quantification of all critical physiological parameters
in single individuals. This would include parameterization of an-
atomical boundary conditions and vocal fold tissue properties; and
time-resolved quantification of flow, pressure, and vocal fold
posturing changes due to motor control, and vocal fold shape
within single oscillations. Third, because we lack these complete
individual-based datasets, FSAI model predictions have not been
subjected to thorough experimental validation, essential to strengthen
confidence in the continuum model approach in general.
Birds also use voiced sound production to communicate (5),

but in contrast to humans, have the major advantage that the
entire neuromechanical motor control loop of their voice pro-
duction, including neural circuitry and vocal organ biomechanics,
is experimentally accessible (24, 25). The process of song motor
sequence learning in songbirds can be monitored individually
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and shares many parallels with human speech acquisition (26–
29). Furthermore, we recently developed methodology that al-
lows detailed quantification of sound-producing structures in the
excised avian vocal organ under controlled conditions (5). Birds
are thus not only a tractable model system for studying the
biophysics (5, 22, 24, 25) and learned motor control of voiced
sound production (26–29), but also provide unique opportunities
to resolve the outstanding challenges for the high-fidelity con-
tinuum approach to voiced sound production.
In this study, we implemented a physics-based, high-fidelity

three-dimensional (3D) continuum model of voiced sound pro-
duction in birds and tested this model experimentally with
individual-based, physiologically quantifiable inputs. Our high-
fidelity model accurately predicted observed key vibratory and
acoustic performance traits. Realistic high-fidelity models thus
lead to accurate predictions and, as such, support the continuum
model approach as a critical tool toward a causal model of voiced
sound production.

Results and Discussion
First, we implemented a 3D immersed-boundary, finite element
method-based fluid–structure interaction solver (SI Appendix,
Methods and Materials), where airflow was governed by 3D,

unsteady, viscous, incompressible Navier–Stokes equations and
dynamics of the avian vocal fold analog were governed by the
Navier equation. The fluid and structure solvers were explicitly
coupled through a Lagrangian interface where airway and vi-
brating structures contacted. To allow rapid simulations when
resolving the large range of spatial and time scales in simulating voice
production, we used the Message Passing Interface parallelization
method (30), combined with the immersed-boundary method as
an advanced numerical method designed especially for simulat-
ing moving boundaries. By carrying out simulations on Cartesian
grids, immersed-boundary methods circumvent complicated
remeshing algorithms in conventional body-fitted mesh methods
and can deal with complex moving boundaries. This approach
allows for high-fidelity models that include accurate description
of geometries, material properties as well as an accurate solution
procedure and strong validation.
To address the second challenge regarding quantification of all

critical physiological parameters in single individuals, we focused
on rock pigeons, where we previously (5, 31) achieved high-quality
kinematic data of the avian vocal fold analog, the lateral vibratory
masses (LVMs, Fig. 1A). We quantified syringeal anatomy for five
individuals using DiceCT scans and implemented high-resolution,
finite-element meshes of the syrinx (Fig. 1A). Tomimic the anatomical
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Fig. 1. Parameterization of vocal organ geometry and tissue properties. (A) Workflow to parameterize FSAI model geometry (Subject P1), with from left to
right: (i) photo of syrinx mounted in in vitro experimental setup, (ii) voltex rendering of iodine contrasted microCT scan showing the bilateral LVM, (iii) 3D
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constraint of the trachea rings on the motion of the LVMs, zero-
displacement boundary conditions were applied at mesh nodes
where tracheal rings were located. Unilateral LVMs consisted of
1,988–4,620 and 2,159–4,693 nodes and 8,101–18,657 and 9,838–
19,131 elements in the solid domain for left and right LVM,
respectively (SI Appendix, Table S1). To parameterize LVM
tissue elasticity in each individual, we developed a noninvasive,
combined experimental/simulation approach. We experimentally
induced static LVM displacement by stepwise increase of the
pressure differential between bronchus and syrinx surrounding air
sac, i.e., transmural pressure (Fig. 1B). We subsequently used the
LVM finite-element model combined with genetic-algorithm–based
optimization (32) to simulate LVM displacement as a function of
transmural pressure (Fig. 1C) and find the elastic modulus value
with the smallest difference between experiment and simulation
(Fig. 1C). These values were used for further dynamic simulation
and ranged from 1.8 to 4.0 kPa for the five individuals (SI Appendix,
Table S1).
To quantify flow, pressure, and LVM posturing changes due to

motor control, we applied boundary conditions where LVM vibra-
tion was obtained reliably previously (5, 31) to both the experimental

preparation and FSAI model (pb = 1.0 kPa, picas = 0.5 kPa). Both
the in vitro syrinx and corresponding individual FSAI models
demonstrated self-sustained stable oscillations in all five cases
(Fig. 2 and Movie S1). To quantify the time-resolved LVM shape
within oscillations, we took advantage of both the unique coronal
view offered by the pigeon syrinx (5) and the lack of a dorso-
ventral vibrational component (31) to quantify the time-resolved
syringeal or glottal opening as a function of caudo-cranial posi-
tion, i.e., a coronal glottovibrogram (Fig. 2C).
To rigorously test the predictions of the FSAI model during

dynamic simulation (the third challenge), we used a blinded pro-
cedure where the modeling team (W.J., Q.X., and X.Z.) had ac-
cess only to geometry, static loading test, and pressure boundary
conditions, but was blind to all other data of the experimental
procedures (performed by J.H.R. and C.P.H.E.). We compared
key vibratory and acoustic predictions by the simulations to the
behavior in the experiment. The glottovibrogram allowed for
comparing four key parameters describing vibratory kinematics:
fundamental frequency of the vibration (fo), the speed of the mucosal
wave, peak of the minimal glottal opening, and the open-closed
quotient. At group level, all predicted values were not significantly
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different from the experimental values (Fig. 2D, for statistics see
SI Appendix, Table S2). We furthermore compared the time-
resolved LVM shape between experiment and simulation at
fixed phases within an oscillatory cycle (Fig. 3). During the
closed phase (0–120°), the simulated LVM shape matched the
experiments very well and was never significantly different from
the bootstrapped shape (P < 0.01, SI Appendix, Materials and
Methods). The only observed significant (P > 0.05, two-sample
Kolmogorov–Smirnov test) discrepancy occurred during late
closed/early opening in three subjects on one side, where the
LVM mass tended to move ∼0.5 mm more cranial (superior in
human anatomical terminology) in experiments compared to
simulations (Fig. 3 B and C). Taken together, our FSAI model
accurately predicted key kinematic parameters of LVM motion.
Lastly, we compared simulation predictions and experimental

observations of two additional key acoustic parameters specify-
ing a sound source—in addition to fo (Fig. 2D)—namely source
level and spectral slope, and these did not differ significantly
(Fig. 4A). Because the simulated LVM vibratory kinematics
matched our observations, we used our FSAI models to calculate
parameters that could not be quantified in the current experi-
ments, such as spatiotemporal pressure and flow velocity distri-
butions over the vibratory cycle (Fig. 4 B–E, SI Appendix, Fig. S1,
and Movie S2). The convergent LVM shape during opening
causes high glottal pressures (∼0.9 kPa) that transfer 23.4 ± 15.7 μJ
of positive energy (n = 5) from flow into LVM (Fig. 4F), facili-
tating opening. When maximum opening is reached at 300°
phase, the LVMs are straight (0° angle in Fig. 4E), reducing
glottal pressure. During early closing, the inferior LVM edge is
moving inwards, causing an energy transfer of 7.2 ± 2.2 μJ back
into the flow. Consecutively, the LVMs close the glottis by
moving together in a divergent shape, causing rapid pressure
reduction driven by elastic forces (arrow in Fig. 4E). Further-
more, flow inertia in the trachea causes negative pressures
(−0.52 ± 0.23 kPa) near the glottis exit prior to full closure (blue

region in Fig. 4D), facilitating closing. Interestingly, another pos-
itive energy transfer to LVMs is observed nearly the end of the
cycle. Our avian data thus show that two primary factors con-
tribute to the pressure asymmetry during LVM opening and
closing that drive self-sustained oscillation: 1) an alternating
convergent/divergent medial surface profile and 2) airflow inertia,
corroborating earlier model predictions (33) and measurements
on (hemi)larynges (34) in mammalian voice production.
Our FSAI model accurately predicted key performance traits of

tissue motion and acoustics driven solely by physiological param-
eters (static geometry, tissue elasticity, and boundary conditions)
and without optimization of either geometry or material proper-
ties parameterization on dynamic performance (14). While the
FSAI model implementation itself is complex (7–14), the inputs
are simple and have, most importantly, directly measurable physi-
ological, material, and geometrical properties. Measurements of
vocal fold material properties (35, 36), initial configuration, initial
stress, and detailed flow-induced 3D vocal fold motion (37) have
been achieved separately in human and mammalian model systems,
but complete physiological data sets have not been obtained in
these clades, nor in any birds, in single individuals nor consecutively
used to thoroughly test FSAI model predictions in a blinded ap-
proach. Recent studies encouragingly suggested that realistic con-
tinuum 3D models lead to more robust vocal fold dynamics
compared to 1D and 2D models (38). Our data shows that realistic
continuum 3D models also lead to accurate predictions.
Continuum models currently allow only limited systematic pa-

rameters exploration because they are computationally expensive
(7). In contrast, phenomenological reduced order models—that
simplify mammalian vocal folds or their avian analogs to one or
two masses (39, 40)—allow broad exploration of a simplified
control space with less computational power and as such have
been used widely to capture the dynamics of mammalian (16) and
avian voiced sound production (22, 41–43). However, because
reduced order models are not first-principle physics models, they
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essentially lack physiological representation of tissue properties
and geometry (1, 4, 16). Reducing computational costs and
time is thus crucial for making continuum models useful in
experimental or clinical settings (1). Rapid developments in
machine learning tools combined with supercomputing provide
promising avenues to predict complex flow solvers (44, 45) that
could significantly reduce computational power and allow
elaborate parameter exploration.
In this study, we did not explore or systematically vary pa-

rameters that are under neural control. Instead we present
strong support for the continuum model approach as a critical
first step toward the endeavor of integrating in vitro, ex vivo, and
in vivo experimental data with brute force computational ap-
proaches into a causal model of motor control of voiced sound
production applicable to birds and mammals.

Methods
We implemented a 3D immersed-boundary, finite-element method-based
fluid–structure interaction solver to simulate voice production in the avian
syrinx. We quantified individual syringeal anatomy and tissue properties in
six adult domestic pigeons (Columba livia) and measured the LVM shape,
pressure, and acoustic output during sound production in vitro. To eliminate
the chance of fitting model predictions on experimental data, we tested the
model predictions in a blinded procedure. For a detailed description of the
methods, please see SI Appendix, Methods and Materials.
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